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Thermal confinement bifurcation and the L= to H-mode 
transition in tokamaks 

F. L. Hinton 
General Atom& San Diego, Caiifrnia 92186-9784 

(Received 31 July 1990; accepted 24 October 1990) 

A bifurcation in the thermal confinement of tokamaks, which resembles the L- to H-mode 
transition, is shown to follow from properties of edge turbulence recently derived by 
Biglari et al. [Phys. Fluids B 2, 1 (1990)], and the standard neoclassical theory of poloidal 
rotation. The temperature profiles develop a pedestal at the plasma edge, and the poloidal 
rotation near the edge is considerably increased, when the heating power exceeds a 
critical value. The energy confinement time is a discontinuous function of increasing heating 
power, but is continuous for decreasing power (power hysteresis). Critical values of 
density and magnetic field are found, which must be exceeded in order for the bifurcation to 
occur. The scaling of the power threshold with density, magnetic field, and ion mass is 
similar to what is found experimentally. 

1. INTRODUCTION 

One of the most important problems in current fusion 
research is to understand the H mode of improved confme- 
ment in tokamaks, discovered by the ASDEX group,* and 
subsequently confirmed and elaborated upon by many 
other groups on other tokamaks. The L-mode to H-mode 
transition is characterized by the sudden development of 
significantly improved particle and energy confinement 
near the plasma edge. This sudden change of the edge 
conditions suggests a bifurcation, but theoretical under- 
standing of it has been elusive. A threshold amount of 
heating power is needed for the transition to H mode, al- 
though the type of heating used (neutral beam, ion cyclo- 
tron resonance, electron cyclotron resonance, or Ohmic) 
does not seem to matter. A theory that can predict the 
power threshold as a function of plasma parameters is 
needed to extrapolate the present experimental confine- 
ment results to ignition devices. 

Recently, spectroscopic measurements of poloidal and 
toroidal plasma flows on the DIII-D tokamak2 have shown 
that the poloidal rotation increases suddenly and signifi- 
cantly during the L- to H-mode transition, and remains 
large in the H mode. This has lead to speculation that 
poloidal rotation or the electric field associated with it may 
be playing a causal role in the transition. Although the 
mechanism for reducing the fluctuations and transport 
near the edge during the L- to H-mode transition has not 
been understood, it is reasonable to assume that it is related 
in some way to changes in poloidal rotation. 

Shaing and Crume3 have proposed that a bifurcation in 
the poloidal rotation is responsible for the improvement in 
confinement, although the connection between poloidal ro- 
tation and confinement was left somewhat vague. Their 
bifurcation depends upon the balance of poloidal torques 
having more than one solution for the poloidal rotation 
speed, where the curve of a (postulated) radial current- 
induced torque versus rotation speed crosses the curve of 
poloidal rotation damping, the latter being a nonlinear 
function of rotation speed because of approximations that 

lead to a resonance in the rotation damping. However, this 
resonance effect may not be present in tokamaks of low 
aspect ratio, such as the DIII-D tokamak. 

In this paper, a bifurcation in the thermal confinement, 
which resembles the L- to H-mode transition and which 
involves poloidal rotation, is shown to follow from prop- 
erties of edge turbulence recently derived by Biglari et ais 
Only the standard neoclassical theory of poloidal rota- 
tion516 is needed, Neither the resonance effect of Shaing and 
Qume nor the radial current that they postulated is used. 

Biglari et aL4 found that sheared poloidal rotation af- 
fects the decorrelation process for ambient edge turbulence 
and leads to a suppression of the turbulence below its am- 
bient value. The turbulent quench mechanism was found to 
be insensitive to the sign of the rotation or its shear. A 
simple formula for the turbulent thermal conductivity that 
has these properties is assumed here: the turbulent thermal 
conductivity decreases with increasing poloidal rotation 
shear and is independent of its sign. 

It is also assumed here that the poloidal rotation is 
given by the standard neoclassical expression, proportional 
to the ion temperature gradient, where the coefficient of 
proportionality is a function of the ion collisionality, and 
therefore of the ion temperature. Taking the poloidal rota- 
tion shear to be due primarily to the variation of this pro- 
portionality coefficient, near the plasma edge, leads to a 
particular nonlinear dependence of the thermal conductiv- 
ity on the ion temperature gradient, and this is responsible 
for the bifurcation. It is assumed here that the ion and 
electron temperatures are equal, and that the only energy 
loss is by thermal conduction. 

The resulting expression for the heat flux across the 
plasma edge, as a function of the temperature gradient, has 
a maximum and a minimum, which implies a jump in the 
edge temperature gradient as the heat flux is increased. The 
temperature profiles obtained with model heating profiles 
show a significant temperature pedestal, when the power 
exceeds a threshold value, similar to the experimental pro- 
files.* The energy confinement times obtained when the 
power threshold is just barely exceeded are larger than 
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those for powers slightly less than the threshold, by a sig- 
nificant factor. Hysteresis in the confinement time versus 
heating power is found also, as in the experiments,7 with 
different confinement times obtained with increasing and 
decreasing heating power, within a certain range of heating 
powers. The scaling of the H-mode power threshold, with 
plasma density, toroidal magnetic field, and ion mass, 
agrees in some respects with the experimental scalings.7’8 
Critical values for the density and magnetic field strength, 
which must be exceeded to achieve the H mode, are pre- 
dicted by this model; the former has been seen experimen- 
tally. i 

Since some of the coefficients in the ion thermal con- 
ductivity model have numerical values that are not known, 
no attempt is made here to compare with the experimental 
numbers. Only the qualitative predictions of the theory are 
compared with the experiment. 

The paper is organized as follows. The properties of 
neoclassical poloidal rotation are discussed in Sec. II. In 
Sec. III, the suppression of edge turbulence by sheared 
poloidal rotation is discussed. The thermal conductivity 
models used in this paper are presented in Sec. IV, and the 
temperature and poloidal flow profiles derived from the 
constant coefficient model are given in Sec. V. In Sec. VI, 
energy confinement times for this model are given, and the 
hysteresis phenomenon is exhibited. A more realistic 
model, which is consistent with the power degradation of 
energy confinement in the L mode, is presented in Sec. VII, 
and the scaling of the H-mode power threshold with 
plasma parameters is discussed in Sec. VIII. A discussion 
of the results is given in Sec. IX, and the results are briefly 
summarized in Sec. X. 

II. NEOCLASSICAL THEORY OF POLOIDAL 
ROTATION 

Useful information is obtained from the lowest-order 
ion momentum balance and particle conservation, 

ttg( - V+ + u~xB/c) = Vpi, 

v* (npj) =o. 

(1) 

(2) 
The magnetic field is assumed to be described by the usual 
flux coordinates, such that 

B=B&+ (3dR)xV$, (3) 

where rj is the poloidal flux function. The ion density is 
assumed to be constant on a magnetic surface, nj 
= n,($), and the radial mass flow is neglected: ui*Vlc, 
u 0. Then the mass flow velocity U~ui must have the form 

u=w($)R $6 + KjC$)B, (4) 

where w is related to the radial electric field and ion pres- 
sure gradient, and Ki must be determined using kinetic 
theory. In the circular cross-section approximation, which 
will frequently be used for simplicity, 

c a@ 
( 

1 aPi m>=-- Z-t&T . 8 1 ) (5) 

The perpendicular and poloidal flows, although in 
nearly the same direction in tokamaks, are given by dif- 
ferent expressions: 

‘b=C[( ii Xv@)/B] + [ (&xVpj)/npB], (6) 

Up = KiBp (7) 

Actually, Eq. (6) is best understood as determining the 
electric field for a given perpendicular flow, which may be 
equal to the poloidal flow, when up < (B,/Bp)up 

In standard neoclassical theory,5 the poloidal flow is 
shown to be proportional to the temperature gradient, in- 
dependent of the radial electric field. A temperature gradi- 
ent causes a poloidal torque to appear on the ions, as a 
result of the dependence of ion collision frequency on ion 
energy. This torque drives the poloidal flow against the 
rotation damping due to magnetic pumping.6 A poloidal 
flow driven in this way can induce a radial electric field, 
according to the ion momentum equation. In particular, if 
the temperature gradient suddenly increases with no 
change in the toroidal angular momentum, then the result- 
ing perpendicular flow will induce a radial electric field. 

Standard neoclassical theory5 gives (again using the 
circular cross-section approximation) 

dTi 
Ue= -sPi-&-9 (8) 

where the coefficient of proportionality pj has different lim- 
iting values (with opposite signs) in the two asymptotic 
regimes of collisionality. In particular, in the Pfirsch- 
Schliiter regime of large collisionality, its value is 
/.Lj = 1.7. 

The sign agrees with the experimental rotation direc- 
tion in DIII-D, for the usual direction of the toroidal mag- 
netic field.2 Also, it is found experimentally that the poloi- 
da1 rotation direction is reversed when the direction of the 
toroidal magnetic field is reversed,* and this can be shown 
to also follow from neoclassical theory (see the Appendix). 
The direction of poloidal rotation is found to be consistent 
with a negative radial electric field, for either sign of tor- 
oidal magnetic field, and this is consistent with the previ- 
ous equations. The poloidal rotation measurements in 
DIII-D are actually of the He+ + impurity; it is assumed 
here that the poloidal rotation of the main ions is approx- 
imately the same. Although the experimentally measured 
poloidal rotation speeds are somewhat larger than pre- 
dicted by neoclassical theory, the errors in the measure- 
ments are difficult to estimate, and it seems not unreason- 
able to assume that they do not disagree significantly with 
the prediction of neoclassical theory. Also, since the radial 
gradients are so large in the experiment, the theory may 
need to be improved, but the result would probably have 
the same form with a different numerical value for the 
coefficient pFLi. 

The ion collisionalities that occur in the DIII-D exper- 
iment7 are in the range of 1-5, which is not large enough 
for the asymptotic Pfirsch-Schliiter regime value to be ap- 
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propriate. The coefficient /l+i in Eq. (8) is actually a func- 
tion of collisionality, which is needed in the following sec- 
tion. 

The parallel component of the ion momentum equa- 
tion and the toroidal component of the total momentum 
equation (neglecting small terms) are 

f?lfZi&(BeUi)= - (B'(V'IIj)), (9) 

fTZfZi&h~?&R)= - (R G+'(V'IIf)) +i(j*V$). 

(10) 
Thus radial current affects toroidal rotation, but not par- 
allel flow. The time derivative of parallel flow can be writ- 
ten in terms of the time derivatives of poloidal and toroidal 
flows. The steady-state poloidal flow equation contains a 
small term proportional to the time derivative of the tor- 
oidal rotation, which is neglected here. The steady-state 
parallel momentum equation, 

(B-(V*II,))=O, (111 
determines the poloidal flow, independently of any radial 
current. 

It is shown in the Appendix that the steady-state po- 
loidal flow for large collisionality, ‘y+$ is given by 

ar 
%= --$cL(V*i)w 

where the proportionality coefficient has the form 

PFLv*i) uj41 + /Q*/(v*i)2, (13) 
with ~0 = 1.7 (the Pfirsch-Schliiter regime limit), and 
Fl co* 

111. SUPPRESSION OF EDGE TURBULENCE BY 
SHEARED POLOIDAL ROTATION 

By using a general analysis, Biglari et aL4 found that 
sheared poloidal rotation tends to suppress ambient turbu- 
lence, and therefore turbulent transport. Although they did 
not distinguish between the ExB flow and the poloidal 
rotation, they implied that it is, in fact, the ExB flow that 
is the more fundamental in affecting the properties of tur- 
bulence resulting from microinstabilities. This equilibrium 
flow, related to the radial electric field by 

uE= - (c/B)E, (14) 
is given in terms of the poloidal and toroidal flows and the 
pressure gradient by the lowest-order ion momentum equa- 
tion: 

43 c +i 
uE=#$----u4---, 

B eB?ti ar (15) 

in which B,+/B = 1 has been used. In the following, the r 
dependence of B is neglected, as well as the second deriv- 
ative terms and the terms proportional to BB/B. The radial 
shear in this flow is then given by the following: 

auE at+ 
--$=a,-+--&$$. 

I 
(16) 

In this paper, the second term will be omitted for simplic- 
ity, and no further distinction between uE and ue will be 
made. The analysis therefore does not, strictly speaking, 
apply to the very edge of the plasma, where the density 
gradient can be larger than the temperature gradient, in 
some experiments. 

Using Eq. ( 12), with V*ix n/T:, the poloidal rotation 
shear is 

a2T 
+ Pi(~*i),$ * 1 (17) 

The second derivative term is assumed here to be negligi- 
ble. For simplicity, the density gradient term that results 
from the density dependence of collisionality will also be 
ignored. The derivative of the proportionality coefficient is 
/Lf(V*V*i) = - 2~1 (V*i) - 3, and SO 

sue -=- 
af 

Note that the coefficient of (aT/L?r)2 in this expression is 
proportional to T3n - 2. 

IV. THERMAL CONDUCTIVITY MODELS 

The thermal conductivity is assumed to be the sum of 
the ion neoclassical contribution5 and a turbulent contri- 
bution that is modified by poloidal rotation shear: 

K=Kn + 1 + y,(aue/a@ * 
(191 

The poloidal rotation shear is assumed to be given by the 
neoclassical expression, Eq. ( 18). Then, the thermal con- 
ductivity is a function of the temperature gradient as fol- 
lows: 

KU 
IfEKn+ i +a,(a~ia~)~' Gw 

Aa=Y,J4c~l/e3T)2(v*i) -4. (21) 
The coefficients K,, K~, and /2, are taken to be constants in 
this section. A model with K, a aT/dr is considered in Sec. 
VII. 

The local heat flux as a function of the temperature 
gradient g= - aT/ar is 

~b?)=K,&+Kh;lg/(l +&zg4). (221 
This function has a maximum and a minimum if 

Kahn > $, which is a reasonable assumption; it is shown in 
Fig. 1 for~,/~,~ = 4. 

Figure 1 can be interpreted as follows. At the bound- 
ary point, r = a, the gradient is determined by the solution 
of the equation 
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92 
Gradient s3 

FIG. 1. Local heat flux versus temperature gradient. 

~(g)=ecQ>, (23) 

where Q(a) is the heat flux across the boundary. At low 
power Q(a), the thermal conductivity is K, + K,. The edge 
temperature gradient is small, since the poloidal rotation 
shear is not yet large enough to suppress the edge turbu- 
lence; this is the L mode. As Q(u) is increased, the edge 
temperature gradient increases continuously up to g,, but 
for Q(a) larger than Q,+ 4 (gl), the gradient must jump 
to a larger value. The poloidal rotation shear suppression 
of the turbulent L-mode thermal conductivity forces the 
solutions to have gradients larger than g3; this is the H 
mode. The critical value Q, is the power threshold for the 
H mode. At sufficiently high power, the turbulent thermal 
conductivity is completely suppressed, and the thermal 
conductivity has the neoclassical value K,. 

V. TEMPERATURE AN5 POLOIDAL FLOW PROFILES 

The equilibrium temperature profile is now determined 
by numerical integration of the equation 

dT - K ,=Q(d, (24) 

where Q(r) is the heat flux at radius r, the integral of the 
power deposition profile. The heating is assumed to be uni- 
form, so the heat flux varies linearly with r: 

Q(r) =Q(a)r/u. (25) 

Equation (24) is integrated inward, starting at r = a, with 
T(a) = 0. It is necessary at each radius r to solve the 
equation 

9 (g) =K,&T + K&/t 1 + az4> =Q(r>, (26) 

for the gradient g= - dT/dr. Since all other energy loss 
mechanisms are ignored, the heat flux at the edge Q(u) is 
also the total heating power. 

Recall that K,, K,, and & are taken to be constants. 
Since the numerical values of these coefficients are not 

r/a 

FIG. 2. Temperature profiles near the power threshold (arbitrary units): 
(a) Q(a) = 0.99Q; (b) Q(u) = l.OlQ,. 

known, no attempt will be made to retain physical units, 
and all results will therefore be expressed in “arbitrary 
units.” 

The results obtained with K, = 1, K, = 4, and ;1, = 1 can 
be summarized as follows. 

(a) L mode. If the edge heat flux Q(a) is less than the 
power threshold Q, the small gradient root must be used 
over the entire range from r = a to r = 0. A profile like the 
lower curve in Fig. 2 is obtained. 

(b) H mode. If the edge heat flux is greater than the 
power threshold Q, the integration must start on the large 
gradient root and stay on this branch from r = a to 
r = a9 (gz)/Q(a), where this root becomes imaginary. 
Then the small root must be used to continue the integra- 
tion to r = 0. The jump in slope in the temperature profile 
occurs at the point where the jump was made from the 
large root for the gradient to the small root. A profile like 
the upper curve in Fig. 2 is obtained. The rule used in 
choosing the correct branch of the solution for the gradient 
is that the temperature profile must be as smooth as it can 
be, and can have a jump in slope only when it is forced to 
by the disappearance of a real root. Also, since the middle 
root with gl <g <g2 in Fig. 1 is unstable, it is not used. 

The temperature profiles shown in Fig. 2 were ob- 
tained with edge heat fluxes slightly larger and slightly 
smaller than the power threshold. The main distinguishing 
feature of the H-mode profile is the significant edge “ped- 
estal,” which occurs because of the finite interval near the 
edge where the gradient is between g2 and g,. In the 
L-mode profile, by contrast, the gradient is always less 
than gl. 

Figure 3 shows the temperature and the poloidal flow 
for these same two heating powers. The poloidal flow was 
calculated using the neoclassical expression Eq. ( 12), with 
the density and magnetic field taken to be uniform. From 
the analysis given in Sec. II, it is clear that, for v+l, the 
proportionality coefficient has the temperature dependence 

fQ(V*i)ZCO-C1P* (27) 

The values co = cl = 1 were used in making Fig. 3. 
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r/a 

FIG. 3. Temperature and poloidal flow profiles near the power threshold 
(arbitrary units): (a) Q(a) = O.YYQ& (b) Q(a) = LOlQ, 

Vi. ENERGY CONFINEMENT AND HYSTERESIS 

By integrating under these curves to obtain the energy 
content, the global energy confinement time is obtained: 

SzrdrnT 
TE” e(a) * (28) 

A constant factor depending on units is ignored here. By 
taking a constant density, n = ao, for simplicity, the ratio 
of the confinement times, for the H- and L-mode cases with 
nearly the same heating power shown in Fig. 2, was found 
to be 3.0. 

The energy confinement time is plotted versus heat flux 
in Fig. 4 for a range of heat fluxes. The hysteresis curve 
was obtained by first increasing the heating power through 
the critical value, and then decreasing it. 

The rule used in obtaining the hysteresis curve is that 
the sequences of equilibria, for increasing and decreasing 
values of heating power, are as continuous as they can be; 
small changes in the amount of heating power should cor- 
respond to small changes in the profiles, whenever possible. 
When the heating power is increasing, the edge gradient 

z 
I= 
F 
8 
E ii; 
5 0 
B 
b 
I5 

I 

0.5 Qc Qc 1.5Q, 
Heating Power 

FIG. 4. Power hysteresis in the energy confinement time (arbitrary 
units): (a) increasing power; (b) decreasing power. 
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FIG. 5. Scaling of energy confinement time with heating power (arbitrary 
units) for the temperature-gradient-dependent model. 

must jump to a larger value when the power exceeds the 
power threshold Q,. This causes the confinement time to be 
a discontinuous function of power. When the heating 
power is decreasing, the gradient must stay on the same 
branch of the solution until the power is less than the 
minimum in the heat flux versus gradient curve, when it is 
forced to jump to a lower value. The sequence of equilibria 
is continuous in the latter case, since the edge region of 
large gradient becomes very thin as the power approaches 
the minimum, and there is no difference in the profiles just 
before and just after the jump to the small gradient branch. 

Hysteresis is seen experimentally? once the H mode is 
achieved, less heating power than the power threshold is 
required to stay in the H mode. 

VII. A TEMPERATURE-GRADIENT-DEPENDENT 
MODEL 

Next consider a model in which the L-mode turbulent 
thermal conductivity is not constant, but given by 

K,=bc& (29) 
proportional to the temperature gradient. The confinement 
time for this model is shown as a function of heating power 
in Fig. 5. The parameters used were K, = 1, K~ = 6, and 
A,= 1. 

(a) L mode. Neglecting the K, and 2, terms in the 
thermal conductivity expression, the temperature profile 
and confinement time may easily be obtained analytically, 
with the result that the energy confinement time depends 
upon heating power: 

7EK Q(a) - 1’2. (30) 
There is degradation of energy confinement with heating 
power, similar to the experimental L-mode confinement 
time scaling.’ This is also found numerically, as shown in 
Fig. 5. 

(b) H mode. The confinement time increases by a fac- 
tor of 2.3 when the power threshold is exceeded. In the 
asymptotic large power limit, the confinement time is de- 



termined completely by K,. However, in the transitional 
range of powers, the coefficient K~ plays a role, as shown in 
Fig. 5. The confinement time approaches the H-mode value 
gradually as power is increased because there is still a sig- 
nificant portion of the plasma volume that has the small 
gradient characteristic of an L-mode. Degradation of con- 
finement with power is not found, contrary to the experi- 
mental results.’ 

VIII. POWER THRESHOLD SCALING 

It is important to understand the scaling of the 
H-mode power threshold with plasma parameters, in order 
to be able to extrapolate to ignition devices. In DIII-D, the 
power threshold is apprdximately linear in n and B, inde- 
pendent of plasma current.7 In JET,” the power threshold 
varies roughly as B’.5. 

In order to determine the power threshold scaling pre- 
dicted by this thermal confinement model, it is necessary to 
postulate some dependence of the parameters K&, da on 
plasma parameters, The temperature-gradient-dependent 
model of Sec. VII is used here. 

The condition for turbulence suppression is given by 
Biglari et a1.,4 as 

3, Awt 
dr N ky Ar: (31) 

where ho, is the decorrelation rate and Ar, and k,,- ’ are 
the radial and poloidal spatial correlation lengths of the 
ambient turbulence. Assuming drift wave turbulence, ‘I 
AhoJk, - q&L,, and Art - ps where C, = ( TJmi) “2, and 
ps = tin, with fli = eB/ rng, and L, is the density gradient 
length. Thus the turbulence suppression condition is 

The dependence of the power threshold, Q, on the 
magnetic field is as shown in Fig. 8. By comparison, the 
experimental power threshold increases with B, also, at 
constant plasma current. 7P’o There is no H-mode transition 
below a critical magnetic field because a maximum in the 
curve of heat flux versus temperature gradient does not 
occur for fields lower than the critical field. Such a critical 
magnetic field has not yet been seen experimentally. 

due cs ->- 
dr N L,’ (32) 

If resistive magnetohydrodynamic (MHD) turbulence12 is 
assumed, Aw, - (L,/R) *‘2(cJL,> and Ar, - k; ‘, so the 
condition is the same as for drift wave turbulence, except 
for the factor (L,/R) “2. This does not depend upon 
plasma parameters in a significantly different way, so the 
drift wave condition will be used. 

The scaling with ion mass can also be obtained by 
1’2 USiIlg K, cc mi and &a mi. Also, by assuming that 

K&C??li - 1’2 (consistent with the L-mode scaling’ of energy 
confinement time TEa mf’2), the result shown in Fig. 9 is 
obtained. 

The model predicts that the power threshold decreases 
with increasing ion mass, as seen in the experiments,8 and 
also predicts that there would be a maximum ion mass for 
which the H mode could be obtained. 

The coefficient of the poloidal rotation shear depen- 
dence will therefore be taken to be y= = (L,/c,)~, which 
depends only on temperature and ion mass. (The unknown 
numerical factor is set equal to 1.) 

The power threshold scaling with density is found by 
using for the neoclassical ion thermal conductivity 
K, a rz2. The turbulent contribution is assumed to be simi- 
lar, K& a n2, although other possibilities are discussed in 
Sec. IX. Also, &an -4, which follows from il, 
= ra( T3n-2)2 and yOa T- ‘. The result is shown in Fig. 6. 

There is a critical density, below which there is no 
H-mode transition, because there is no maximum in the 
curve of heat flux versus temperature gradient below this 
critical density, as shown in Fig. 7. Such a critical density 
has been seen experimentally.’ 

Gradient 

Concerning the magnetic field scaling, note that the FIG. 7. Heat flux versus gradient for different densities. Density increases 
coefficient of the temperature gradient in the neoclassical upward in this series of curves. 

Density 

FIG. 6. Scaling of power threshold with density (arbitrary units). 

poloidal rotation expression is inversely proportional to the 
magnetic field strength: pi( Y*i) a l/B. Hence the coefficient 
;1, in the temperature gradient dependence in the thermal 
conductivity depends on the magnetic field as &a l/B2. It 
is assumed that K, and K& do not depend upon B at con- 
stant plasma current. 
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FIG. 8. Scaling of power threshold with magnetic field (arbitrary units). 

The scaling laws obtained here numerically can also be 
derived in approximate form analytically, in the special 
case K& > K,, when the thermal conductivity in the L 
mode is much larger than in the H mode. (Since the rele- 
vant values are near the plasma edge, this is a realistic 
case.) Then, the equation for the heat flux can be approx- 
imated as follows: 

9 (g) c=K&/( 1 + &g4,. (33) 

The maximum in this function occurs at gl c=/~,J 1’4 and so 
the power threshold is 

(&E &? (gl ) c Kd2i1;‘? (34) 

Using the assumption of drift-wave turbulence, $‘2 
- n - 2B- lrn .Y 1’2, and the somewhat arbitrary choice K& 

- i12i?lie ‘12, the scaling of the power threshold is 

Q,- n4B/m, 

ton Mass 

(35) 

ZTG. 9. Scaling of power threshold with ion mass (arbitrary units). 

It is also a shortcoming of the simple calculation pre- 
sented here that the temperature dependence of the coeffi- 
cients has been omitted. Also, all density gradient terms 
were ignored, and these are not small at the edge of the 
plasma. The effects of the latter are expected to contain the 
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The linear dependence on magnetic field agrees with ex- 
periment, and the dependence on ion mass is about right, 
but the density dependence is too strong (Q, should be 
linear in density). 

IX. DISCUSSION 
The picture of the L- to H-mode transition that is 

implied by this model is the following. After the auxiliary 
heating begins (or after the initiation of the discharge in 
the case of Ohmic heating), the heat flux at the plasma 
boundary gradually increases. The plasma near the edge 
goes through a sequence of quasisteady states, with the 
edge temperature gradient determined by the edge heat 
flux and the turbulent thermal transport. When the edge 
heat flux reaches a critical value (the power threshold for 
the H-mode transition), the edge temperature gradient in- 
creases rapidly, until a new quasiequilibrium is reached. In 
this new quasiequilibrium state, the large temperature gra- 
dient near the edge drives a large sheared poloidal flow, 
which causes a sheared radial electric field to appear (since 
the toroidal momentum input has not changed). The 
sheared ExB flow then suppresses the turbulent transport, 
allowing the edge temperature gradient to remain large. 
The temperature profile then appears to have a “pedestal,” 
and the energy confinement time is significantly larger; the 
poloidal rotation has increased significantly, as seen in the 
experiments. 

During the short time this transition is taking place, 
there would be a radial polarization current,” driven by 
the changing radial electric field, and this would create a 
toroidal torque that would change the toroidal rotation, 
according to Eq. ( 10). This current would be inward, since 
the radial electric field is becoming more negative, and 
would cause the toroidal corotation to slow briefly, as is, in 
fact, observed in the DIII-D experiments2 

Thus the simple model thermal conductivity predicts 
several features similar to those seen in the experimental 
results for the L- to H-mode transition. The following 
problems exist with the conclusions of the modd, however. 

( 1) The energy confinement time is predicted to be 
neoclassical at large values of heating power, whereas ex- 
perimentally it shows a degradation with power similar to 
that in the L mode. The neoclassical expression should 
therefore probably be replaced by a second turbulent con- 
tribution, which is not affected by poloidal rotation shear. 

(2) The scaling of power threshold with plasma cur- 
rent iP predicted by this model is wrong: since rEalP ex- 
perimentaliy,8’9 it foliows that K&, as well as K,, must de- 
pend upon current, and so will the power threshold Qc. But 
Q, is found experimentally to be independent of rP at con- 
stant density and magnetic field. The coefficient of the ve- 
locity shear term must therefore also depend upon current, 
which implies a different model of turbulence than has 
been considered here. 



1.0 I 
2.0 3:o 4:o 5’.0 6.0 t.0 

CL 

FIG. 10. Critical exponent for the bifurcation as a function of the param- 
eter p, defined in the text. 

grad-B drift direction dependence of the power threshold,14 
since this has been shown to affect particle confinement 
near the edge.15 

A question concerning the generality of the bifurcation 
phenomenon predicted by this model may be expressed as 
follows. Given a thermal conductivity in the form 

K&CVdrI 

K=Kn + 1 + y,lf3ue/a,la’ (36) 

for what values of a is there a maximum in the local heat 
flux versus temperature gradient? For the neoclassical re- 
lationship between ue and aT/&, the necessary values of 
the exponent a lie above the critical curve shown in Fig. 
10, in which the important parameter is seen to be 

,llS (K&K,$jl,(1’2a)). 

A related question concerns the density dependence 
assumed for the turbulent transport coefficient K& If it is 
assumed that K& cc np, how does the existence of a density 
threshold depend on the value of p that is used? With 
K,, a n 2 and &cc n - 4, the coefficient p defined previously 
becomes 

(37) 

Holding a fixed and varying the density, a critical density 
will correspond to crossing the curve in Fig. 10. For defi- 
niteness, let a = 2 so that the exponent of the density in the 
expression for p is p - 1. Then it is clear that, for the 
p = 1, there is no dependence on density, so there will be 
no density threshold. Also, for p > 1, increasing the density 
means increasing ~1, so there will be a lower critical density: 
the density must exceed this threshold value in order that 
a bifurcation be possible. And finally, for p < 1, increasing 
the density means decreasing p, so there will be an upper 
critical density: the density must be less than this value for 
a bifurcation to be possible. The experimental results sug- 
gest that p = 2, which was used in this paper, is an appro- 
priate choice. 

X. SUMMARY 

A simple model for the thermal conductivity as a func- 
tion of the temperature gradient, which was motivated by 
recent work on turbulence,4 leads to a thermal confinement 
bifurcation with properties similar to the L- to H-mode 
transition seen experimentally in tokamaks. The poloidal 
rotation is assumed to be neoclassical, in contrast to the 
model of Shaing and Crume.3 The following results are 
obtained. 

( 1) Temperature profiles in the H mode have an edge 
pedestal. Poloidal rotation and rotation shear are signifi- 
cantly larger in the H mode. The confinement time for an 
H-mode profile is significantly larger than for an L-mode 
profile with nearly the same heating power. The confine- 
ment time exhibits power hysteresis. 

(2) A temperature-gradient-dependent model shows 
power degradation of confinement time in the L mode, 
although not in the H mode, and critical values of density 
and magnetic field, below which the H mode does not 
occur. 

(3) The power threshold increases with increasing 
density and magnetic field, at constant plasma current, and 
decreases with increasing ion mass, as in the experiments. 
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APPENDIX: NEOCLASSICAL POLOIDAL ROTATION 

The poloidal flow is determined by the steady-state 
parallel momentum equation, Eq, ( 1 1 ), where the parallel 
viscous stress is given by 

(B*(V.H;))= - ((%VB)m,j-d3u(u;- 4/2)4, (Al) 

with fi the ion distribution function. This function is a 
solution of the drift kinetic equation. By generalizing the 
work in Ref. 16, assuming that the flow is of order 
(p/LI)V,ht this equation is found to be 

where Ki = uie/Be The guiding center drift velocity is 
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v,=(c/B)i;xW+ (&Q,)x(/&‘B+@Vi;), 
(A31 

with z = B/B. 
The drift kinetic equation can be written in the form 

(Y-j- Cii)fi= -9?y (A41 

where 9 is the right-hand side, which consists of two 
terms, proportional to the poloidal flow and the tempera- 
ture gradient. The solution for large collisionality, p*i>l, 
where 

Y*j~~R/(Uth*~ilf3’2), (AS) 
with E the inverse aspect ratio, can be written as 

fi=C~'(~-~~~~')-'~ 

=c~‘[3-+~lc;1+ (Y-~&~1)2+*+2?J7. (A6) 

It follows that the parallel viscous stress has the form 

v*i / 

with only odd powers of collisionality appearing because 
only the I = 2 Legendre polynomial component of fi con- 
tributes to the stress. Setting this stress equal to zero, the 
poloidal flow is given by 

lie= - 

w3) 

The coefficients d, and ct in this expression are known, but 
the others are not. The result can be written as 

ue= - --&(v*i)~, 

where the proportionality coefficient has the approximate 
form 

rrtl 
id%) -I-Jo + m 

for Y& 1, where p. = 1.7 (the Pfirsch-Schhiter limit). It is 
reasonable to assume that ,ul ~0 in order to facilitate the 
transition to the low collisionaiity limit, where p(Y*i) has 
the opposite sign. 

Equation (A2) implies that the poloidal rotation di- 
rection is reversed when the direction of the toroidal mag- 
netic field is reversed, because the drift velocity term 
v,*VT changes sign, but the other terms on the right-hand 
side do not. 
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